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Fluid Mechanics lectures and Tutorials

An Introduction to Fluid Mechanics Course

The course Fluid Mechanics is designed to introduce students to the fundamental
engineering science concepts related to the mechanics of fluids. This includes basic fluid
properties, fluid statics, fluid dynamics, fluid viscosity and turbulence, introduction to flow in
closed conduits, pumps and pumping.

The aim of this course is to provide students with an understanding of the basic principles of
fluid mechanics and of their application to Petroleum engineering problems. There is a
strong focus on water and oil in the course as they of the most important fluids for
engineering practice.

Objectives :

- The course will introduce fluid mechanics and establish its relevance in Petroleum engineering.

- Recognition of and develop the knowledge about the fundamental hydraulic definitions and the principle
fluid properties underlying the subject.

- Establish how these definitions and properties are utilized to solve hydrostatical and hydro dynamical
problems that may face the Petroleum engineer.
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. Introduction

What we are meaning by Fluids?

Fluid may be defined as a substance which deforms continuously (flows)
when subjected to shearing forces, or
A fluid is a substance which capable of flowing

A fluid has no definite shape unless it is supported (conforms to the shape of the

containing vessel)

MechaniCs is the field of science focused on the force, energy, motion,

deformation interactions of material bodies based on their properties.

What are we meaning by Fluid Mechanics?

Fluid mechanics is the study of fluids, how they move, how they mix, how they
interact with or how they effecton the bodies submerged within, and how they

interact with and effecton the bodies that attached them and their reflections on
human activities.

Fluid mechanics may be defined also as that branch of engineering science that
deals with the behavior of fluid under the condition of rest and motion

Fluid mechanics may be divided into three parts: Statics, Kinematics, and
Dynamics

Statics Deals with fluid at rest in equilibrium state, no force no acceleration

Kinematics Deals With flow behaviors of fluid like velocity, acceleration and flow
patterns.

Dynamics Deals with the effects of flow behaviors on fluid surroundings like
forces and momentum exchange
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The matter states
The matter or substance is classified on the bases of the spacing between the
molecules of the matter as follows:

Matter or

Substance

Fluid State Solid State

Liquid Gaseous
State State

¢ |n solids, the molecules are very closely spacing and then inter-molecules
cohesive forces s quite large, and then possess compactand rigid form.

e Whereas in liquids these spacing are relatively large, and then less inter-
molecules cohesive forces between them, and then can move freely, but it still
has a definite volume (no definite shape, has free interface).

¢ While these forces is extremely small in gasses, and then have greater
freedom of movement so that the gas fill the container completely in which
they are placed (no definite volume, no definite shape, and no free interface).
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Gas
Attribute Solid Liquid
Typical !05’0“ 9o
Visualization P Ty
| 00000
8000 0°0
00 % %o
Liquids take the
. . . .| shape of the
Macroscopic Solids hold their shape; . . Gases expand to fill a
. . container and will .
Description no need for a container . closed container
stay m open
container
Molecules have low Iﬁ;%tuiisgplgigz Molecules move around
- mobility because they Y freely with little interaction
Mobility of . though there are . o
are bound in a structure except during collisions;
Molecules . strong N
by strong intermolecular | . this is why gases expand to
mtermolecular forces . .
forces fill their container
between molecules
. . Medum; e.g. . .
. . Often high; e.g., density . > Small; e.g., density of air at
Typical Density ; density of water is : ;
of steel is 7700 kg/m’ 1000 ke/ns sea level is 1.2 kg/m
Small—molecules
Molecular Small—molecules are are held close Large—on average,
Spacing close together together by molecules are far apart
mtermolecular forces
Effecstt::ssshe AT | Produces deformation Produces flow Produces flow
Produces deformation Produces Produces deformation
Effect of Normal | that may associate with | deformation . )
. . associated with volume
Stress volume change; can associated with chanee
cause failure volume change &
High; decreases as Low; increases as
Viscosity NA temperature ’ .
. temperature mcreases
increases
Difficult o compress: Difficult 1.:0 Easy to compress; bulk
- .| compress; bulk modulus of a gas at room
Compressibility | bulk modulus of steel is . . .
160 % 109 Pa modulus of liquid conditions is about
water is 2.2 x 109 Pa | 1.0 x 105 Pa
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System of units
MKS system of units

This is the system of units where the metre (m) is used for the unit of length,
kilogram (kg) for the unit of mass, and second (s) for the unit of time as the
base (primary) units.

CGS system of units

This is the system of units where the centimetre (cm) is used forlength, gram
(g) formass, and second (s) fortime as the base (primary) units.

International system of units (SI)

Sl, the abbreviation of La Systeme International d’Unites, is the system
developed from the MKS system of units. Itis a consistent and reasonable
system of units which makes it a rule to adopt only one unit for each of the
various quantities used in such fields as science, education and industry.

There are seven fundamental Sl units, namely: metre (m) for length,

kilogram (kg) for mass, second (s) for time, ampere (A) for electric
current, kelvin (K) for thermodynamic temperature, mole (mol) for mass
quantity and candela (cd) for intensity of light. Derived units consist of these

units.
BASIC (PRIMARY) DIMENSIONS
Dimension Symbol Unit (SI) Quantity Sl Unit
Velocity m/s
Length I meter (m) acceleration m/s”
Mass M kilogram (kg) force N
Time L second (s) energy (or work ELTIESJ
Temperature 0 kelvin (K) i ] N m,
Electric current i ampere (A) kg m%s>
Amount of |Ig ht C candela (Cd) power Watt W
Amount of matter N mole (mol) N m/s
kg m%/s®
pressure ( or stress) | Pascal
P.
N/m?,
kg:;r’mf's2
density kg/m®
specific weight N/m”
kg/m?/s®
relative density a ratio
no units
viscosity N s/m* pa.s
kag/m s '
surface tension N/m
kg /s?
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Fluid properties

General fluid (liquid) properties:

There are many properties for fluids, but we will consider only main six characteristics:

1.

o0k wWN

Mass Density,
Weight Density,
Specific Volume,
Specific Gravity,
Viscosity and
surface tension

1.

Mass Density:the density (also known as specific mass or density)of a

liquid defined as the mass per unit volume at a standard temperature and
pressure. Itis usually denoted by Latin character p (rho). Its unit are Kg/m?
m

P=v
p of water = 1000 kg/m?® at 4°C and 1 Atm.
p=f(PT) o |
Weight Density: (also known as specific weight) is defined as the weight per
unit volume at the standard temperature and pressure, it is usually denoted as

y. its unit ere N/m?3. w
Y = =pxg

Where g gravitational acceleration=9.81 m/s?

y of water = 9810 N/m? at 4°C and 1 Atm. _
y=f®PT,9)

. Specific Volume:lt is defined as a volume per unit mass of fluid, It is denoted

by v

<
Il

3=
I

Its unit are m3/Kg.

D

Specific Gravity: |t is defined as the ratio of the specific weight of the fluid to
the specific weight of a standard fluid
For liquids the standard fluid is pure water at the specified temperature, and
denoted by Sg
le. Sc = y”q—uid)

T

Ywater
For Gasses the standard fluid is air
As identical to specific gravity, Relative Density may come as the ratio of the
density of the fluid to the density of a standard fluid
For liquids the standard fluid is pure water at the specified temperature, and
denoted by rd
ie. rd = —pliq“id)

T

Pwater
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Example(1):

Example: Calculate the Specific weight, s

pecific mass, specific volume and specifi
gravity of a liquid having a volume of 6m? s

and weight of 44 kN at 4 °C,

:Solution

W=44 kN

3
V=6 ma
Specific weight, »:
W 44 _ kN
=5 =73335=7333N/ .

Specific mass or density, p

_ ¥ _7.333x1000 :
P=g™ om1 - 7475kg/m
Specific volume, v:
1 1
= e 3
v b= 7475 = 0.00134 m3fkg

Specific gravity, Sg:
Sg = ]’uquxd) 7333
wc 9810

}(WE fer

Example2

A reservoir of glycerin (glyc) has a mass of 1200 kg and a volume of 0.952 m®. Find the glycerin’s welght (W),
mass density (@), specific weight (y), and specific gravity (s.g.).

[ F=W =ma=(1200)(9.81)=11770N or 11.77kN
- p=m/V = 1200/0.952 = 1261 kg/m’
y=W/V =11.77/0.952 = 12.36 kN/m®
$.8. = Yayel Yingo a4 = 12.36/9.81 = 1.26
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Example 3: Calculate the Specific weight, specific mass, specificvolum and the
total weight of the crude oil truk having a volume of 36m3and S = 0.85 at 4 °C and
the empty truck weigh =16 T

Solution:
Given:
V=36m?
5=0.85
Required : Specific weight, Specific mass, Specific volume and Total
Weight
Solution:
Specific weight:
s=Yoil = 085x9.81 =833 KN/m?
w
Specific mass:
_y _ 8330 _
P=47= 10 =850 Kg/m?
Specificvolume:
L = 0.00117 m3/K
v= E = g0 O m°/Kg
Total Weight:
WT =W, + W,
o Wail o o
Yoit = —; W,; = 8.33x36 = 299.88 KN

WT =299.88+ (16 x 1000x 9.81)/1000=456.85KN = 45.7T

Example 4
If 100 ml of oil weights 95 gr.

Calculate: Mass Density (p), Weight Density(y), Specific Volume(V), Specific Gravity(S) and Relative
Density(Rd) for this oil.

Solution: m = 95gr = —— = 0.095 kg , v = 100ml = ——— = 0.0001m?
1000 1000x1000
sp=2=22=0950kg/m? .~y =p.g=950x9.81 = 9319.5 N/m
.'.V:i:()'OOOl:105x10_3m3/k .5:@:%:095
m 0.095 ) g Y 9810 )

P 950
wrd = 22— == — 095
Pw 1000
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5. Viscosity:itis a property of a real fluid (an ideal fluid has no viscosity) which

determine its resistance to shearing stresses. It is primarily due to cohesion,

adhesion and molecular momentum exchange between fluid layers.
1 - For solids, shear stress reflect on magnitude of

angular deformation (1 ~ angular deformation, 6)

L2

stress
' fixed
deformation
=zolid
stress 2 — For many fluids shear stress is proportional to
—) the time rate of angular deformation (T ~ d6/dft)
,;__.”:" - continuous
deformation
fluid
When tow layer of fluid at the distance of 6y apart, move one over the other at
different velocities, say u and u+du, the viscosity together with relative velocity
F [
de
Bu ot TOo d_ A
[ L dt u(y) J
I - —» u=
! ! u=ou Velocity profile
’l' 'I' du
oy 6?' 8?' dy \IE _du
M K ey
'I ’l S
'l 8X ’l
[ u=0 No slip atwall
0

causes shear stress acting between layers. With respect to the distance between
these two layers 3y, the shear stress, 7, proportional to angular deformation
50

T X —
ot

ou ot
5y

From the geometry of Fig. we see that
tan 660 =
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In the limit of infinitesimal changes, this becomes a relation between shear strain
rate and velocity gradient:

ao du ou

dt  dy Sy
Newton’s law of viscosity:the shear stresses on a fluid element layers is directly

proportional to the velocity gradient (rate of shear strain). The constant of
proportionality is called the coefficientof viscosity (absolute viscosity, dynamic viscosity, or

simply viscosity) and denoted as g (mu).

i du
i.e. _ AV
dy AY
Coefficient of Dynamic Viscosity: h=
&

Units: N s/m? or Pa s orkg/m s

The unit Poise (p) is also used where 10P =1 Pa's (1P = 0.1 Pa-s)
Water y=8.94 x 10 Pa s at 25°C

Water y=1.00 x 102 Pa s at 20 °C

Mercury y=1.526 x 10 Pa's

Olive oil p =.081 Pa s

Kinematic Viscosity. v = the ratio of dynamic viscosity to mass density

vV=—
p
Units m?/s and Called kinematic viscosity because it involves no

force (dynamic) dimensions .
The unit Stoke (St) is also used where 1St = 104 m?/s (15t=cm?/s)

Waterv=1.7 x 108 m?/s. at 0 °C
Waterv =1.00 x 108 m?/s. at 20 °C
Airv=1.5x%x10"°m?s.
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10

Bingham plastic

Shear thinning

Mewrtonian

Shearing stress, T

1

Shear thickening

Shearing stress, ©

. . odu
Rate of shearing strain, ET,

e The fluid is non-Newtonian if the relation between shear stress and shear

strain rate is non-linear

Crude oil (50 °F)

Water (B0 °F)

Water (100 °F)

Air (B0 °F)

) -
Rate of shearing strain, ay

e Typically, as temperature increases, the viscosity will decrease for a liquid, but

will increase for a gas.

Figure 2.3

Kinematic viscosity for
air and crude oil.

Note:

To convert from rotational (RPM) to linear velocity(v) :|v (E) = RPM.

To convert from Torque stress (T) to shear stress (7) : [T =

6x 107

2x10°
0

50 100
Temperature, °C

21T

S 60

T
" 2mhar?
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Example 1

In figure if the fluid is oil at 20°C (u = 0.44 Pa.s). What shear stress is required to move the
upper plate at 3.5 m/s?

D=7mm
v Moving
w=Vv plate:
=V
. .V.'ISC‘(')I;IS‘. '
D ' ﬂuid_ .
'FJ??WWW
=0 - Fixed plate
Solution:
du 3.5m/s
T=u—=0.44Pa.s X = = 220 Pa
dy m
1000
Example 2

A board 1 m by 1 m that weighs 25 N slides down an inclined ramp (slope = 20°) with a
velocity of 2.0 cm/s. The board is separated from the ramp by a thin film of oil with a
viscosity of 0.05 N.s/m2. Neglecting edge effects, calculate the space between the board
and the ramp.

Problem Definition

Situation: A board is sliding down a ramp, on a thin film of oil
Find: Space (in m) between the board and the ramp.
Assumptions: A linear velocity distribution in the oil.

Properties: Oi, pn=0.05N"- s/mo.
Sketch:

! = W zin 20°

tangential
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Plan

1. Draw a free body diagram of the board, as shown in “sketch.”

* For a constant sliding velocity, the resisting shear force is equal to the component of weight parallel to the
inclined ramp (equilbrium condition must be exist).

- Relate shear force to viscosity and velocity distribution.
2. With a linear velocity distribution, dV/dy can everywhere be expressed as AV/Ay, where AV'is the velocity of
the board, and Ay is the space between the board and the ramp.

3. Solve for Ay.
Solution

1. Free-body analysis
F

Ftangential = Ushear

W.sin20° =t X Area

dv
W.sin20° =u—A
sin Mdy

2. Substitution of dV/dy as AV/Ay

AV
W.sin20° = u—=A

Ay
3. Solution for Ay
A av A
y=H W.sin20°
Ay = 0.05———1 = 0.000117 m = 0.117
y 25.5in 20° m mm

Example 3

Oil has dynamic viscosity (4 = 1.0 x 10-3 Pa.s) filled the space between two concentric
cylinders, where the inner one is movable and the outer is fixed. If the inner and outer
cylinders has diameters 150mm and 156mm respectively and the height of both cylinders
is 250mm, determine the value of the torque (T) that necessary to rotate the internal
cylinder with 12 rpm?

Solution:
AV
=y

=P = 12 0 % 0,075 = 0.09425 1m0 i50mm |156mm
60 60 -
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T = Chr

t=TQRmxhxr)" =TQmr")"

R .\
'udy 'uAy
7=10"3 x 22*° _ 31 41667 x 10—2%

T =31.41667 x 1072 X 2 X .075 X T X .25 X.075 = 2.7 X 10™* N.m

Example 4

Example 1.17. In the Fig. 1.14 is shown a central plate of area 6 m” being pulled with a force
of 160 N. If the dynamic viscosities of the two oils are in the ratio of 1:3 and the viscosity of top oil
is 0.12 N.s/m® determine the velocity at which the central plate will move.

Solution: Area of the plate. 4 =6 m’
Force applied to the plate. F = 160 N
Viscosity of top oil, n=0.12 N.s/m’ T ~ u=0.12 N.s/m

Velocity of the plate, u:

IV IT I I I IIIIIIIPIIIIIIIFIIIP

g
Let F, = Shear force in the E —» 160 N
. - o
upper side of thin —
(assumed) plate. l —-3u
F, = Shear force on the
lower side of the thin
plate. and Fig.1.14
F = Total force required to drag the plate
(=F,+F,)
Then, F =F +F=1>X4+1,x4
du “du
= u| — .x:A+31[— x A
(5 ], Hlay ),
( where 1, and 1, are the shear stresses on the two sides of the plate)
160=0.12%x — 2 = x6+3x0.12x ———x6
6x10 6x10
160
or 160 =120u + 360u =480u or u=-—— =0.333 m/s (Ans.)

480
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Example 5

The velocity distribution for flow over a plate is given by u= 2y+y2where u is the velocity in
m/s at a distance y meters above the plate surface. Determine the velocity gradient and
shear stresses at the boundary and 1.5m from it. Take dynamic viscosity of fluid as 0.9
N.s/m?

Solution

losity gradiant (du
velosSl ygra an dy

du
velosity gradiant (@) at(y=15)=2+2%15=55"1

du
T=ﬂ.(@> —»at(y=0)->1=2x09=18Pa

d
T = LU (%) —at (y=15) »17=5x09 =45 Pa
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1.80 Example 6
A square block weighing 1.1 kN and 250 mm on an edge slides down an incline on a film of oil 6.0 um thick (see
Fig. 1-6). Assuming a linear velocity profile in the oil, what is the terminal speed of the block? The viscosity of
the oil is' 7x10-3 Pa.s

1 RN~

0.0060mMm

C.0060mMm
Fig. 1-6(a) Fig. 1-6(b)
Solution:
Given:
u=7x10" pas, y=6x100 F=11kN

T= @ =T = ik =1100sin20,/0.25% = 6019.5 Pa
'udy A

- 60195 = 7x1073

orio6 V=T 5.16m/s
X

Example 7

1.81 A shaft 70.0 mm in diameter is being pushed at a speed of 400 mm/s through a bearing sleeve 70.2 mm in
diameter and 250 mm long. The cleararnce, assumed uniform, is filled with oil at 20 °C with v = 0.005 m?/s and
s.g. =0.9. Find the force exerted by the oil on the shaft.

Solution:
Given:
V=400mm/s, I= 250 mm , v= 0.005 m*/s, 5=0.9
_ dv
TTHG
Yoii 8829N
= pxv and p,; = g and Y, = SX),, = 0.9x9810 = 3

8829 Kg

= Poit = 5 gg — 9005 > p = 900x0.005 = 4.5 Pa.s

r=(70.2-70)/2=0.1x10°m

&L T=45x ————> = 17960 Pa then F = txAs
= 17960xwx70x10 3x0.25 = 987.4 N

Example 8
1.82  [f the shaft in Prob. 1.81 is fixed axially and rotated inside the sleeve at 2000 rpm, determine the resisting torque
exerted by the oil and the power required to rotate the shaft.

Solution:
Given: V=2000rpm, I=250mm , v= 0.005m%/s, 5=0.9

T =pg and p= 45Pa.s
r=(70.2-70)/2=0.1x10%m

v @x(mm) v 27mx35x1073x2000 —_
60 60 s
o 733 5
N T = 4.5xm = 329.1x10° Pa
then T = txAsxr = 329.1x 103x70x 10 3xmx0.25 x? x1073
= 633N.m
H.w
1.97 Determine the viscosity of fluid between shaft and sleeve in Fig. 1-18.
Lin ||:Iiar|'|
Bib_¢ g V=04 /s

g Fig. 1-18

ans 1.015pa.s =0.02121b - s/ft*
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6. Surface Tension: Surface tension is a property of liquids which is making what is
like a thin tensioned membrane at the interface between the liquid and another fluid

(typically a gas). Surface tension has dimensions of force per unit length and
denoted as, o (Sigma), and its unit is N/m.

14— A molecule

l: on the surface

— A molecule
inside the
liquid

e |tis a fluid (liquid)-fluid (gas) interface property

Surface tension is a properties of certain fluid-fluid interface
water-air ..... 0.075 N/m at 20°C Water-air .... 0.056 N/m at 100°C
mercury-air ... 0.1 N/m

Pressure inside water droplet:

let  P=The pressure inside the drop Fp AR

d= Diameter of droplet SR 2mRY
o= Surface tension of the liquid (water-air interface)

From sectional free body diagram of water droplet we have

::: :..-h iy ~] :F_'
= tyl
3. Surface tension force acting around the circumference=o X nd,

under equilibrium condition these two forces will be equal and opposite, i.e.
P X gdz =0 xnd

1. AP between inside and outside = P-0 =P
2. Pressure force =P X g d?, and

_axnd 4o

=TT .. T
° d
4d2

From this equation we show that (with an increase in size of droplet the pressure
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intensity is decreases)
Derive P for air bubble with the help of figure below

(h) Half a bubble

Table 1 Surface Tensions of Common Liquids

Liquid Surface Tension ¥ (N/m)
Benzene (20 °C) 0.029
Blood (37 °C) 0.058
Glycerin (20 °C) 0.063
Mercury (20 °C) 0.47
Water (20 °C) 0.073
Water (100 °C 0.059
Example 1:

If the surface tension of water-air interface is 0.069 N/m, what is the pressure inside the
water droplet of diameter 0.009 mm?

Solution:

Given d= 0.009 mm; o= 0.069 N/m

The water droplet has only one surface, hence,
4o 4x0.069

_ N _ kN
= d = m— 30667W_ 30.667@01‘ kPa

Surface Tension - Capillarity

e Property of exerting forces on fluids by fine tubes and porous media, due to both

cohesion and adhesion (surface tension)
e Cohesion < adhesion, liquid wets solid, rises at point of contact

e Cohesion > adhesion, liquid surface depresses at point of contact, non-wetting fluid
e The contact angle is defined as the angle between the liquid and solid surface.

e Capillarity is_a fluid (liquid)-surface property

e Meniscus: curved liquid surface that develops in a tube
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weight of fluid column = surface tension pulling force \ 27 Ra
b,
pg(mR?h) = 2mRo cos® —
I h
N I |
20 cosQ o lw
= Liquid
PgR Lok

.Expression above calculates the approximate capillary rise in a small tube
. The meniscus lifts a small amount of liquid near the tube walls, as rincreases this amount may

become insignificant

. Thus, the equation developed overestimates the amount of capillary rise or depression,
particularly for large r.

.For a clean tube, @ = 0.for water, @ = 1400for mercury

.Forr>1in (6 mm), capillarity is negligible . lts effects are negligible in most engineering
situations.

.Important in problems involving capillary rise, e.g., soil water zone, water supply to plants
.When small tubes are used for measuring properties, e.g., pressure, account must be made for

capillarity

Meniscus
D
¢
\ L/
Water Mercury hl(} Meniscus ||
(a) Wetting (b) Nonwetting ~ "Vaer Mercury |
fluid fluid

Example 2:

To what height above the reservoir level will water (at 20°C) rise in a glass tube, such as
that shown in Figure below, if the inside diameter of the tube is 1.6 mm?

Properties: Water (20 °C), 0 = 0.073 N/m; y = 9790 N/m3

Solution
1. Force balance: Weight of water (down) is balanced by surface tension force (up).

Foz=W=10

ord cos@ — (AR (rd? 1 4) =10

; Because the contact angle 8 for water against glass is so small, it can be assumed to be 0°
:therefore cos 6 = 1. Therefore i —

Surface-tension

l'_ J-l et
:-.-d-*(i&)(i|—3 \ ..............

L

2. Solve for Ah

der 40,072 N/ m
Ar=—= =186 mm|
T 970 Mt 16 = 10 m
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Example 3

Find the capillary rise in the tube shown in Fig. 1-26 for a water-air—glass interface (6 = 0°) if the tube radius is
1 mm and the temperature is 20°C. . _

-

I 5 20 cos 8 _(2)(0.0728)(cos 0°) _

= 0.0148m or 14.8mm
pgr  (1000)(9.81)(v00)

-

: ) 9 o
h ’
— —

—2Y  Fig. 1-26

Example 4

A clean tube of diameter 2.5 mm is immersed in a liquid with a coefficient of surface
tension = 0.4 N/m. the angle of contact of the liquid with the clean glass can be assumed to
be 135°. The density of the liquid= 13600 kg/m3. What would be the level of the liquid in
tube relative to free surface of the liquid inside the tube?

Solution:
Givend=2.5mm,0=4 N/m, 0=135°  p=13600 kg/m?3

Level of the liquid in the tube, h:

B 20 cos®
~ pgR
4 % 0.4X%X cos135

~ (9.81 x 13600) x 2.5 x 10-3
=—-3.3910"*m or —3.39mm

h

Negative sign indicates that there is a capillary depression (fall) of 3.39 mm.
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Example 5: Derive an expression for the capillary height change h, as shown, for a
fluid of surface tension o and contact angle between two parallel plates W
apart. .Evaluate h for water at 20°C (0=0.0728 N/m) if W = 0.5 mm

V)

/

- W —
E L4

Solution: With b the width of the plates into the paper, the capillary forces on each wall
together balance the weight of water held above the reservoir free surface:

hbpgW = 2(cbcos®)
- 2(ocos®)
pgw
for water at 20°C (0=0.0728 N/m, y = 9790 N/m?) and W = 0.5 mm.

_2x(0.0728 x cos(0))

9790 x0.0005  _ 0-03m = 30mm

H.W

1104 Two clean, parallel glass plates, separated by a distance d = 1.5 mm, are dipped in a bath of water. How far
does the water rise due to capillary action, if o = 0.0730 N/m?

h =0.00994 m

1.124  Develop a formula for capillary rise between two concentric glass tubes of radii 7, and r, and contact angle 6.

1 [T
h
H . | L
'l';-u- 2ocos @
r.———h

y(r.—r)
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L3

The (fluid at rest), fluid statics, or hydrostatics

Pressure is defined as the ratio of normal force to area at a point, or may be

defined as the normal force that’s applied toward the unit area, and
denoted by P. Its units are N/m? or what is called Pascal, Pa.

Highlights

Fluid exerted, in general, both normal (due to their weights) and
shearing forces (primary due to their viscosity) on surfaces (any
plane) that are contacted with (or submerged in) it.

The normal forces that are exerted by fluid weights is called the
fluid pressure force and fluid pressure or intensity of fluid pressure.
So the pressure can be defined also as the weight of fluid
column intensity above a certain area.

The source of pressure and its effects and its variation of a fluid at
rest is due only to the weight of the fluid.

Pressure is a scalar quantity; that is, it has magnitude only.

Pressure is not a force; rather it is a scalar that produces a
resultant force by its action on an area.

The resultant force is normal to the area and acts in a direction
toward the surface (compressive).

Fluids at rest cannot resist a shear stress; in other words, when
a shear stress is applied to a fluid at rest, the fluid will not remain
at rest, but will move (flow) because of the shear stress.

Hydrostatics is the study of pressures throughout a fluid at rest
The controlling laws are relatively simple, and analysis is based on
a straight forward application of the mechanical principles of force
and moment.
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Pressure Units

e Some units for pressure give a ratio of force to area. Newtons per
square meter of area, or pascals (Pa), is the Sl unit. The
traditional units include psi, which is pounds-force per square inch,
and psf, which is pounds-force per square foot.

e Other units for pressure give the height of a column of liquid.
Engineers state that the pressure in the balloon is 20 cm of water:
When pressure is given in units of “height of a fluid column,” the
pressure value can be directly converted to other units using Table

below.
Pressure Units
technical torr (Torr) pound- m of water
Pascal atmospher — <2
(Pa) bar (bar) atmosphere force /in
(at) (atm) mmHg (psi)

- - - - -5
1Pa =1 N/m? 105 1.01957><10 9.86962X10 7.50036X10 145.021><10 10.19x10

= 10.1936

1 bar 100,000 6 , | 1.0197 0.98692 750.06 14.5037744
10° dyn/cm

1at 98,066.5 0.980665 =1kegflem? 0.96784 735.56 14.223 9.9966

1atm 101,325 1.01325 1.0332 =] atm 760 14.696 10.33

B Tl = ; - 13.59x107°
Ltorr 133.322 | 13332x10° 1.35935><10 1.3158x%10 1 Torr; 119.337x10

3 ~ 1 mmHg 3

03 70.307x10"68.046x10 0.703
3 3

1 psi 6.894x10% 68.948x1 51.715 | =1 Ibf/in?

1M og1354 00981 | 010003 00968 73584 | 14225 ) mowaer
water
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Example 1: 1 Pa=1N/m? =10°bar =10.197x107% at = 9.8692x107°
atm , etc.

A pressure of 1 atm (Standard atmospheric pressure) can also be stated as:

=1.013 25 bar
1013.25 hectopascal (hPa)
= 1013.25 millibars (mbar, also mb)

= 760 torr [B]
=~ 760.001 mm-Hg, 0 °C= 1.033 227 452 799 886 kgf/cm?
= 1.033 227 452 799 886 technical atmosphere

= 1033.227 452 799 886 cm—-H20, 4 °C

Pressure at Point

e At a point, fluid at rest has the same
pressure in all direction.

To prove this, a small wedge-shaped free
body element is taken at the point
(x,y,2) in a fluid at rest.

z f. = P, - 8y5z — P, - 8567 - sinf

1
ny =P, - 6x6z — P; - 656z - cos — §6x5y62 Y =0 ... 2

For unit width of element in z direction, and from the geometry of wedge we
have the follows:

6s-sinf =98y, and 6s-cosf =6x............3
Substitute of eq.3 in egs. 1 and 2 and rearrange the terms yields:
P =P

1
Py-5x=Ps-6x+§5y6x-y

At a point the element limits to have an infinitesimal dimensions and then we
can eliminate the term (% dydéx - y) from the above equation because of it'’s a
higher order of differential values. Thus we have at final that:

P, =P, =P,
Where 6 is an arbitrary angle, these results gives an important first principle of
hydrostatics:

At a point, fluid at rest has the same pressure in all direction.
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Pressure variation:

e For static fluid, pressure varies only with elevation (depth) change
within fluid.

To prove this real, we take a cubic fluid element as shown

o . (R +6R)
While fluid at rest, applying the
equations of equilibrium on the
element. That’s yield:

1. In vertical direction-y:

Zf)/:Py'Sx‘SZ_(Py"' P) — *W «— P +6R)
5Py) +0x6z — Ox6ydz -y = Sy
0 A b5z
P, - 6x6z — P, - 6x6z — 6P, i
- 0x6z
— 6x8ydz -y (%)
=0

- 6P, - 6xb6z = —6x6ybz -y
- 6P, =—y-dy
For certain fluid surface elevation, when the direction of §y downward
away from surface (means in the negative direction of y), this called the
depth difference and denoted as &h, so the last above equation
become:
8P, =y 6h

these results gives an important second principle of hydrostatics:

o For static fluid, pressure varies only with elevation (depth) change
within fluid by rate equal to specific weight y of that fluid.

e |n a fluid, pressure decreases linearly with increase in elevation (height,
y or z) and versa visa.

¢ |n most textbooks and reference applications, they are use z-coordinate
instead of y-coordinate as vertical direction axis so:
AP, = —y - Ay becomes AP, = —y-Az

e Second principle of hydrostatics means that for any two point in a same
continuous fluid A and B: _

J— 7
APy =~y Az, p I T
P
Py — Py =—y - (25 — 24) .
B/
PB+ _PA+ —H H e_::‘:
” Zp = ” Zp = 9‘% Az, consrant
e This is the hydrostatics equation 7
N Datum

and H called the hydrostatics Y
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pressure head or what is called piezometric head. \With liquids we
normally measure from the surface.
e Open free surface pressure in liquids mostly is atmospheric, Patmospheric.
e For constant density fluids, and if taking the free surface pressure

(atmospheric pressure, Patmospheric) @s zero, the pressure at any depth h
becomes:

Ph=yh

e Thus h="tn
Y

Pressure related to the depth, h, of a fluid column referred to as the
pressure head, h.
2. In horizontal direction-x:
Yfi =P, 6y8z— (P, +6P,) 8y6z =0
P, - 6y6z — P, - 6y6z — 6P, - 6y6z =0
- 6P, =0
This equation means there is no change in horizontal pressure with horizontal
direction.
These results gives an important third principle of hydrostatics:
e For certain continuous static fluid, there is no pressure change in
horizontal direction (explain!)

The above mentioned principles is called Pascal principles.

I:)atm 7

Water

Pa=Pg=Pc=Pp=Pe=Pr=Pg=Pan +pgh

Py=P
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Example 2:
A freshwater lake, has a maximum depth of 60m, and the mean atmospheric
pressure is 91 kPa. Estimate the absolute pressure in kPa at this maximum
depth.
Solution
Take y = 9790 N/m3. With pa = 91 kPa and h = 60 m, the pressure at this
depth will be
p =91 KN/m? + (9790 N/m3)(60 m) 1kN/1000N

= 91 kPa + 587 kN/m? =678 kPa  Ans.
By omitting Paim we could state the result as p = 587 kPa (gage).
Example 3: (EXAMPLE 3.1 LOAD LIFTED BY A HYDRAULIC JACK)
A hydraulic jack has the dimensions shown. If one exerts a force F of 100 N
on the handle of the jack, what load, F2, can the jack support? Neglect lifter
weight.

Fa

5 cm diametar

| Lifter

30 em

1.5 cm diameter

5
Cheack valye

Problem Definition
Situation: A force of F = 100 N is applied to the handle of a jack.
Find: Load F2 in kN that the jack can lift.
Assumptions: Weight of the lifter component (see sketch) is negligible.
Plan
1. Calculate force acting on the small piston by applying moment equilibrium.
2. Calculate pressure p1 in the hydraulic fluid by applying force equilibrium.
3. Calculate the load F2 by applying force equilibrium.
Solution
1. Moment equilibrium
2 Me=0
(033 m) = (100 M) = (003 m)F, =0

B 033 me= 100 — 1100 ¥
! 003 m

2. Force equilibrium (small piston)
}jmﬂlprm_p]ﬂl_ir]_u
Py =Fy=1100
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Thus

& 1100 K - ;
P1=ﬁ:‘=w=ﬁ.25wm°l¢.m‘
3. Force equilibrium (lifter)

- Note that p1 = p2 because they are at the same elevation.
- Apply force equilibrium:
2P e =Fy=p =0
Fy—pody— :5.22 x 10° La) G w (0.05 m) ‘J =[1zz ]

i}
e The jack in this example, which combines a lever and a hydraulic machine,

provides an output force of 12,200 N from an input force of 100 N. Thus,
this jack provides a mechanical advantage of 122 to 1!

Example 4
12 For the vessel containing glycerin under pressure as shown in Fig. 2-2, find the pressure at the bottom of the
tank.
I  Solution p =504+ yh =50+ (12.34)(2.0)=74.68 kN/m> or 74.68 kPa

Gilycerin 2m

y=12340 Nim3

1 , 1 Fig. 22
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Example 5

For the Cruid Oil Storage tank of 40 m Dia. shown with Floating steel cover of weight about 5000Kn
what would be the oil height from the tank base if maximum presure at the center of the valve not
exeed 1 Bar

W=5000Kn
Oil
S=0.9
Solution
Given:
D=40m, $=0.90 , W = 5000KN

cowver

P..ax- = 1 par=100000 Pa.
Required (H).

P=vy.h+ P.ppor
— P =(0.9x9.81)xh + P.,,,, = 100Kpa.

P _ 5000 _ 397K

cover — %(40)2 e pa.
~ 100—-3.97 10.87
~ (09x9.81)

— Total height from base (H)=10.87+0.5+1=12.37~ 12.3m

Example 3.1

Atmospheric 0
pressure: p, =
a / v

E =
Rt Ji =5m  p = 1000kg/m?3
be

Given: p and L.

Caleulate: p at point b in gage pressure.
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Example6.] WATER PRESSURE IN A TANK Solution

What is the watér pressure at o depth of 35 ft in the tank P2 = P1 +vh

shonwn? 14
P2=0+yh= yh

Probfem Definirion

Situation: Water is contained in o tank that is 50 & deep. P2 = 35x62.4 = 2184 psf =
Find: Water pressure {psi ) at a depih of 35 i

Properties: Water (S0°F), v =624 i,

Sketch:
."J"\
W Elivabion = 250 1

EL R

@

Wator
T'm BOFF

Elwsation m 2001

Example 7

The system in Fig. 2-5 is at 20 °C. If atmospheric pressure is 101.03 kPa and the absolute pressure at the bottom
of the tank is 231.3 kPa, what is the specific gravity of olive 0il? =979

I 101.03 + (0.89)(9.79)(1.5) + (9.79)(2.5) + (5.£.)(9.79)(2.9) + (13.6)(9.79)(0.4) =231.3  s.g.=1.39

avA -
S=089 | saE 3001 | t5m

Water 25m

Qlive oil 29m

S=13.6 _ Mercury | O-4m Fig. 2-5

HW

2.6 A pressure gage 7.0 m above the bottom of a tank containing a liquid reads 64.94 kPa; another gage at height
4.0 m reads 87.53 kPa. Compute the specific weight and mass density of the fluid.

ans P =767.58kg/m’
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L4 Pressure

ePressure measurement reads as follows:
1. Relative to absolute zero (perfect vacuum): called absolute pressure

2. Relative to atmospheric pressure: called gage (gauge) pressure

olf P < Pam , we call it a vacuum (or negative or suction) pressure ,
its gage value = how much below atmospheric

e Absolute pressure values are all positive

e\While gage pressures may be either:

— Positive: if above atmospheric, or

— Negative (vacuum, suction): if below atmospheric

¢ Relationship between absolute, gage and atmospheric pressure

reading:
Pabs = Patm + Pgage

Example 1:
Oil with a specific gravity of 0.80 forms a layer
0.90 m deep in an open tank that is otherwise @
filled with water. The total depth of water and oil e
is 3 m. What is the gage pressure at the bottom il 0.90 m
of the tank? @ .

Problem Definition
Situation: Oil and water are contained in a tank.

Find: Pressure (kPa gage) at the bottom of the Water 2 10 m
tank. r=10°C
Properties:

1. Qil (10°C), S =0.8. @ -

2. Water (10°C), Table A.5: y = 9810 N/m3.

Solution:
P; = P+ (y.-h)out(y-h)y
— P; =0+ (0.8x9810)x 0.9 + (9810)x2.1 = 27664.2Pa
~ 27.7 Kpa.
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Example 2 o J
In Fig. the tank contains water and immiscible e L
oil at 20°C. What is h in cm if the density of e
the oil is 898 kg/m>?

Solution: For water take the density =
098 kgfm'q’. Apply the hydrostatic relation
from the oil surface to the water surface,
skipping the 8-cm part: s

atelev1 P1=P2 atwater 12em il

Pam +(898)(2)(h+0.12) -t —
;(993)(}5)(006 + 0 [2) o P » cm

Solvefor h=008m=8.0cm Ans.

)

Water

L | . e_\qu.( \)

Example 3

2.15 The closed tank in Fig. 2-3 is at 20 °C. If the pressure at point A is 98 kPa abs, what is the absolute pressure at
point B? What percent error results from neglecting the specific weight of the air?

Solution: T ,4 il
5m Air D g A
at elev.(1): P1=P2 (water) ‘L . i
PA=PB+(5-3).y,, T
A F3 T _*_

- 98 = PB+2x(9.81) ;[1 o i leng s 15 l Fig. 23
. PB=78.38Kpa. l . N J[

o T@wm: 'l Em- eNew-(1)

i | s

Example 4

2.20 Calculate the pressure, in kPa, at A, B, C, and D in Fig. 2-8.

Solution:

atelev.(1):p1 =P2  (water)

~PA+08y, =0 - PA=-0.8x9.81 = -7.85KPa
at elev.(2):p3=PB  (water)
~ 04+ 0.5x9.81 =PB - PB =49KPa
PC = PB (air) —» PC = 49 KPa

PD = PC + yh,;; = 4.9+ (0.9x9.81)(1.9) = 21.27 KPa
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Example 5

2.19  The tube shown in Fig. 2-7 is filled with oil.
Determine the pressure heads at A and B in meters of water.

Solution:
atelev.(1):p1 = P2  (oil)
+0=PB+vyh,; — PB=—0.6(0.85x9.81) = —5 KPa

at elev. (1):p1 = P3  (oil)

+0=PA+yhy; > PA=-28(0.85x9.81) = —23.34 KPa

for convert the (P)to water head (h): - P = hxy,, - h= P/],w

chA=PA/, —=2334/ . — _238m

~ hB = PB/VW = _5/9.81 =—-0.51m

:

Fig. 27

®

Example 6

253 For the configuration shown in Fig. 2-36,

calculate the weight of the piston if the gage pressure readingis 70.0 kPa.

Solution:

Let W = weight of the piston.
atelev.(1):p1=P2 (oi])

o ———— = 1x(0.86x9.81) + 70 —> W = 61.6 KN
gy 212 ( )

|=—1-m diameter

|e—1-m diameter —|

.

——oil
(s = 0.86)

o

Fig. 2-36

- T

il
(sg. = 0.86)

Example 7 HW

A closed circular tank filled with water and
connected by a U-piezometric tube as shown
in figure. At the beginning the pressure
above the water table in the tank is
atmospheric, then the gauge that connected
with tank read an increasing in pressure that
caused falling in the water level in the tank
by 3 cm. a) calculate the deference in height
that accrued between water levels inside the
tank and in the external tube leg. b)
Determine the final pressure that was
.reading by the gauge h=75m

P=735.75 KPa

d)lcm

i ¢500m

3cm
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LS

Pressure measurement devices

Absolute pressure measurement
Barometers: The instrument used to measure atmospheric pressure is called
barometer

1. Mercury Barometer: which is illustrated in figure below, which consist of

a one meter length tube filled with mercury and inverted into a pan
that’s filled partially with mercury. The height difference of mercury in
inverted tube respect to outside them reads the atmospheric pressure
value (first was invented by E. Torricelli, 1643).

(Merm;ll :a[s} avery M)
Values of standard sea-level low vapor pressure.)
atmospheric S
pressure=101.325 kPa abs
=1013.25 mbar abs py=p,
=760 mm Hg, Torr et
=10.34 m H:0 amosphers.) h=-a

z

1 P
¢ ' 4 2,=0
pM'
Mercury -

2. Aneroid Barometer: uses elastic diaphragm to measure atmospheric
pressure

Linkage

Diaphragm Evacuated

cylinder

L e B B Gk, |

A

Aneroid barometer
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Gage pressure measurement.

1. Manometry
1.1. Piezometer

For measuring pressure inside a vessel or pipe in
which liquid is there, a tube open at the top to
atmosphere may be attached, tapped, to the walls of
the container (or pipe or vessel) containing liquid at a
pressure (higher than atmospheric) to be measured, A
so liquid can rise in the tube. By determining the Y
height to which liquid rises and using the relation P1 =

pgh, gauge pressure of the liquid can be determined.

Such a device is known as piezometer. To avoid A_+_
capillary effects, a piezometer's tube should be about

12mm or greater.

1.2. Manometers Open

Open

s —— (1)

The using of piezometers for high pressures
measurement become impractical and it is useless 4
for pressure measurement in gases and negative
pressure. The manometers in its various formsisan £ 4
. -+ ) (13 Fro
extremely useful type of pressure measuring _hf
instrument for these cases. _{
Lo @  |e|—L @

at any level for same fluids contacting any two Egg?ge L
points fluid)

. —
use the following formula \ /

P1=P2

Piown = P*? +yh

—5 4

— (3]

When liquids and gases are both involved in a manometer problem, it is well
within engineering accuracy to neglect the pressure changes due to the columns

of gas. This is because " liquid ” Ygas

¥s
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Manometers limitations: manometers suffers from a number of limitations.

1.

While it can be adapted to measure very small pressure differences, it
cannot be used conveniently for large pressure differences - although
it is possible to connect a number of manometers in series and to use
mercury as the manometric fluid to improve the range. (limitation)

. Amanometer does not have to be calibrated against any standard; the

pressure difference can be calculated from second and third principles
in hydrostatics. ( Advantage)

. Some liquids are unsuitable for use because they do not form well-

defined interface. Surface tension can also cause errors due to
capillary rise; this can be avoided if the diameters of the tubes are
sufficiently large - preferably not less than 12 mm diameter.
(limitation)

A major disadvantage of the manometer is its slow response, which
makes it unsuitable for measuring fluctuating pressures

. Itis essential that the pipes connecting the manometer to the pipe or

vessel containing the liquid under pressure should be filled with this
liguid and there should be no air bubbles in the liquid.(limitation).

Bourdon gage

Curved tube of elliptical cross-section changes curvature with changes
in pressure. Moving end of tube rotates a hand on a dial through a
linkage system. Pressure indicated by gage graduated in bar, kPa or
kg/cm? (=98.0665 kPa) or psi or other pressure units.

Fainter

Bourdon-tube
spring

-

Section A-4
through tuba

E

S
H'..':It Link

Socket

i)
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Examplel: (Piezometers)
In figure pressure gage A reads 1.5 kPa. The
fluids are at 20°C. Determine the elevations z,
in meters, of the liquid levels in the open
piezometer tubes B and C.

Solution:

let hB above gas level = h1 and let hC above clyc.level = h2

at elev.(1): p1= P2

*PA=yg.hl - 15=667h1+0 - hl1=023m

at elev.(2): p3 = P4

~ 1.5+ 1.5x6.67 =12.36xh2 +0 —» h2=093m

(gasaline)

(glyc.)

Im

Gasoline

MNr

@

L5m 75('333;;1 l
% D || amth NG
[jm_ Glycerin ;/r..
K“3":|Z.3.r' POV |

Example 2: (U-manometers)

Water at 10°C is the fluid in - —

the pipe of Fig. 3.11, and - 4

mercury is the manometer i Flow

fluid. If the deflection Ah is 60 ¢

cm and Zis 180 cm, what is the — 1

gage pressure at the center of s b .,

the plpe? ¥m = 133000 N/ ¥,,(manometer liquid)

Solution:

let presure at pipe center = P

at elev.(2): p1= P2

(mercury)

~“P+y,.l=Ahy,+0
— P +9.81x1.8 = 0.6x133
- P =62.14KPa

Yl

AT AY C"L\\J

nanometer liquid)



Dr. Ammar
Line

Dr. Ammar
Line


Fluid Mechanics lectures and Tutorials

37

Example 3: (U-manometers)

In Figure fluid 1 is oil (Sg=0.87) and fluid 2 is
glycerin at 20°C (y=12360 N/m3). If P2m=98 kPa,
determine the absolute pressure at point A

Solution:
atelev.(1): p1=P2 (glyc.)

~ PA+0.1y3 = 0.32y, + P(atm)
— PA + 0.1x0.87x9.81 = 0.32x12.36 + 98
— PA =101.1 KPa

T

P

Example 4:
(Differential-Manometers)

Pressure gage B in figure is to
measure the pressure at
point A in a water flow. If the

pressure at B is 87 kPa l § -t
estimate the pressure atA, in Water Sam
kPa. Assume all fluids at fow _i_
200C.

SAE 30 oil

Mercury

4¢m

Gage B

~

6cm

Ilcm

Solution:

atelev.(1): p1 =P2 (merc.)

(11-4)

~ PA+ 005]/w =PB + 0.06.'}/01'1 + oo

Ym

— PA +0.05x9.81 = 87 + 0.06x8.72+ 0.07x133.1
— PA =96.35KPa

You = 8720 N/m3

¥ = 133100 N/m3
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Example 5: (Differential-Manometers)
In figure all fluids are at 20°C. Determine the pressure difference (Pa) between

points A and B. Kerosine \f—\

A

Benzene
¥g = 8640 N/mg

¥m = 133100 N/ ,

TS cm

yg = 7885 N/m3

Solution:

Kerosine ~J

Benzene

.
9em
[ N

14 ¢m
i

E-,"-{‘\.I'E\j, _
Mercury~Jo

at elev.(1): p1 =P2 (merc.)
# PA+0.2y5 = 0.08.y,, + P3 v....(1)
at elev.(2): p1=P2 (Ker.)
2 P3—0.32yg = P4 wvereenn(2)
at elev.(3): p1 =P2 (water) and P5 = PB (air)
% P4+ 0.26y,y = P5 = PB woeecvooc(3)
from(1) - P3 = (PA—8.92)

from (3) - P4= (PB — 2.55)

subs P3 & P4 at eq.(2)

— PA —892—2.52=PB —2.55

Re arrange:— PA — PB = 8.92+ 2.52— 2.55
=8.89Kpa.
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Example 6: (Successive Differential-Manometers)
EXAMPLE 3.7 MANOMETER ANALYSIS
Sketch: What is the pressure of the air in the tank if
€, =40cm, €, = 100 cm, and € = 80 cm?

/::'\/ﬁur

- _:1‘

o

Mercury

(5 -0.8)

Solution:

at elev.(3): p1 =P2 (merc.)
2 Pl=15y, +0 - P1 = 1064 KPa.
atelev.(4): p1="P2 (air.)
~ P2 =106.4KPa. @)
at elev.(2): p2+ 1.y, = P(air)  (oil.)

-y
R

Mercury

&

» 106.4 + 7.85x0.4 = P(air) — P(air) = 109.6 KPa.

Example 7: Inverted-Manometers Meriam
. . red oil,
,For inverted manometer of figure $G = 0.827
. 18
,all fluids are at 20°C. If ps- pa= 97 kPa o
what must the height H be in cm Water !
Mer
_ N
Yerm = 8096 N/ 5 ¥m = 133100 N/ 5
35¢cm
(B
Solution: I‘f,—/ i *.z:-,f,f//@ N -
1Q w & New) (_\\
atelev.(1): p1l =P2 (meriam) ¢ | @
« PA—H.y, — 0.18V,m = PB — (0.35 + H + 0.18)V,nym- 4 18em
7
1

~PB —PA=70.54+133.1.H —9.81.H — 1.457 J
—- H=0.226m ~ 22.6cm ¥ I

D__ /Mcr

3Hem
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ExamEIe 8 Piezometer
294  An open tube is attached to a tank, as shown Zre 4 ?5 @)
in Fig. 2-66. If the water rises to a height of 800 mm in the tube, t B 800 mm
what are the pressures p, and pp of the air 100 mm
above the water? Neglect capillary effects in the tube. - Water 1 -
' 300 Mo
L —  Fig. 2-66
Solution: I -
Dirmun-rx\‘ W
atelev.(1);: p1 =PB (water)
« (0.8—0.3).y,, = PB - PB = 0.5x9.81 = 4.9KPa. 3 e, o
‘ 100 mm gy
i PB=P2 —4.9=PA+0.1x9.81 e T ise] <<
— PA =3.92KPa. ?~ 300mm !
1 L . W2

Example 9

292 Find the difference in pressure between tanks A and B

in Fig. 2-64 if &, = 330 mm, d, = 160 mm, 4, = 480 mm,
and 4, = 230 mm.

Solution:

atelev.(1): p1=P2 (Hg)

s PA +9.79x0.33 = 13.6x9.79x(0.48 + 0.23sin(45) + PB
- PA— PB =82.33 KPa.

Example 10

2.9 For the setup shown in Fig. 2-68,
calculate the absolute pressure at a.

Assume standard atmospheric pressure,
101.3 kPa. ¥m = 133000 N/ 5

Solution:

at elev.(1): p1=P2 (water)
» 1013 + (0.6 — 0.2).y,, - P2 = 105.22KPa.
at elev.(2): p3=P4 (Hg)
~ P2 —0.14x133 = P4 — P4 = 86.6KPa.
~ PA = P4+ (0.14 + 0.09)(0.83x9.81) = 88.47KPa.

[ Lan gy
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Pressure Forces and Pressure Distributions on Surface

Hydrostatic Force (Force due to the pressure of a fluid at rest)

(e.g Force exerted on the wall of storage tanks, dams, and

(ships

Q. How is Hydrostatic Force on the vertical or inclined planes
determined?

Basic conditions for a Plane surface submerged in a fluid
- Force on the surface: Perpendicular to the surface (No 7)

- Pressure: Linearly dependent only to the vertical depth

1. On a Horizontal surface (e.g. the bottom of a tank)

Pressure at the bottom, p = E

: Uniform on the entire plane

! tuuluﬂtu

.. Resultant forcel! F,=pA=yh4

(A: the bottom area of container)


lenovo
Highlight
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2. On an Inclined surface

Consider a plane shown

- At surface: p = patm

- Angle 6 between free surface
& the inclined plane

y axis: Along the surface

x axis: Out of the plane

® Along the vertical depth h

<~ Pressure linearly changes < Hydrostatic force changes

Differential Force acting on the differential area dA of plane,

dF = (Pressure)-(Area) =(yh)-(dA)  (Perpendicular to plane)

Then, Magnitude of total resultant force Fp

F, = yhdA= y(ysin6)d4 where /= ysin 0

=ysin@ I y yd4 1st moment of the area about x-axis

- LydA

4

where y.: y coordinate of the center of area (Centroid)
P IAydA =y,.A4

Ve
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Then,

F,=ydy_sin@=(y h )A where y /i.: Pressure at the

centroid
= (Pressure at the centroid) x Area

Magnitude of a force on an INCLINED plane

- Dependent ony, Area, and Depth of centroid

- Perpendicular to the surface (Direction)

|Examplel:) HYDROSTATIC FORCE DUE TO Plan

CONCRETE Apply the panel equation given in Eq. (3.23).
Determine the force acting on one side of a concrete form )

2.44 m high and 1.22 m wide (8 ft by 4 1) that is used for Solution

pouring a basement wall. The specific weight of concrete is 1. Panel equation

23.6 KN/m? (150 Ibf / £t3). R F=pA
Problem Definition “ Lk 2. Term-by-term analysis

Sitations Pc » p = pressure at depth of the centroid

= _ _ 3
L. Concrete in a liquid state acts on a vertical surface. P = (Yeonerete) (Zeentroia) = (23.6 kN/m")(2.44/2 m)

2. Vertical wall is 2.44 m high and 1.22 m wide = 28.79 kPa

Find: The resultant force (kN) acting on the wall. * A = area of panel

Assumptions: Freshly poured concrete can be represented as A= (244 m)(1.22 m) = 2.977 m?
a liquid.

3. Resultant force
Properties: Concrete: y = 23.6 kN/m?3,

F =pA = (28.79 kPa)(2.977 m?) =|85.7 kN

Example 2

3,37  Water in a tank is pressurized to 85 emHg (Fig. 3-29). Determine the hydrusta.tic force per meter width on panel
AB.

Slulion g On panel AB, po = [(13.6)(9.79)](0.85) + (9.79)(4 + 3) = 167.0 kPa, F,, = (167.0){(3)(1)] = 501 kN.

21' T
m 85cm
4 | i
Water,
20°C 4m
Hg. 20°C
—1 LA
T

B Fig. 3-29
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The location of point of action of F»  (Center of pressure, CP)

- Not passing though Centroid!! (Why?)

- Related with the balance of torques due to of Fp

i) Position of Fpron y-axis

Yp: y coordinate of the point of action of Fp

Moment about x axis:

The moment of resultant force = The moment of its components

Foy, :JAde

= (YAysind)y, = L;/sinHyZdA = #sif0 L y2dA

[vd4 I

X

e V= =
:> « P _1-'I‘_..A }.-CA

where [, = fA y2dA: 2nd moment of area (Moment of inertia, +ve

always )

or, by using the parallel-axis theorem, I, =1, .+ Ayc2

—> " Ve =—v 4 T (Always below the centroid !)
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ii) Position of Fpon x-axis

Xp: x coordinate of the point of action of Fp
By the similar manner,

The moment of resultant force = The moment of its components

Fox, = LxdF

= (JAy $mO)x, = ysin Oxydd = ysid 0] xydd

—

I xvdA g
Lo Xp = A
v.A4 v A4

where jA xydA = ly,: Area product of inertia (+ve or —ve)

or, by using the perpendicular-axis theorem, 1, =1, + Ax_ .y,

CP For a symmetric submerged area, xp = Xc (Ixyc = 0)
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Exam Fl' e-6 _4nisosceles triangular plate of base 3 m and altitude 3 m is immersed vertically in
an oil of specific gravity 0.8. The base of the plate coincides with the free surface of oil. Determine:
(i) Total pressure on the plate; (if) Centre of pressure.
Solution. Base of the plate, 5> = 3 m
Height of the plate. /# = 3m

N »,; Free oil surface

4—3m

Area, 4= = =45m

Specific gravity of oil, §=08
The distance of C.G. from the free surface of o1l,

1, 1

X=-h==x3=1
x = 3h=3 m

(i) Total pressure on the plate, P:

We know that, P=wAX
= (0.8x9.81)x45x1
P = 353 KkN (Ans.)

(if) Centre of pressure, /i:

Centre of pressure 1s given by the relation:

= _ Ig _ (bi/36) _
n= E + X _—.E +
_ (3x3/36)
= Tasaa 7!
h = 1.5m (Ans.)
Example 7
A vertical, rectangular gate with water on one side is shown in Fig. 3-7. Determine the total resultant force
icting on the gate and the location of the center of pressure. . PRSTRITRS
e e == E =)
]
1
Im Ry h, ’F
.IJ'
& .
3 :
I Tt 4 e .Tdr:r-
_L*__m_q'1 %Nga
Solution:

F = yh A= (9.79)(3 + 1.2/2)[(2)(1.2)] = 84.59 kN

Ly (.12 @1.2°12
ho=haty 4 =(3+5)+ Grieay e
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Example 4: FORCE TO OPEN AN Sketch:
ELLIPTICAL GATE

An elliptical gate covers the end of a pipe 4 m in diameter. If
the gate is hinged at the top, what normal force F is required
to open the gate when water is 8 m deep above the top of the
pipe and the pipe is open to the atmosphere on the other side? J

Neglect the weight of the gate.

/>\

Problem Definition o - At;:g:s[l‘gic 4 m diameter
Situation: Water pressure is acting on an elliptical gate. \(

Find: Normal force (in newtons) required to open gate.

2. Center of pressure

Properties: Water (10°C), Table A.5: y = 9810 N/m”. . )
* 7= 12.5 m, where jis the slant distance from the

Assumptions: water surface to the centroid.
1. Neglect the weight of the gate. * Area moment of inertia / of an elliptical panel using a
2. Neglect friction between the bottom on the gate and the formula from Fig. A.1
pps el T wa'b _ w25 m)’*(2 m) — 24.54 m*

Plan 4 4
1. Calculate resultant hydrostatic force using F = pA. * Finding center of pressure
2. Find the location of the center of pressure using Eq. (3.28). = 5 4
3. Draw an FBD of the gate Vip—F = L - =i =0.125m

' = ¥4 (125 m)(15.71m?)

4. Apply moment equilibrium about the hinge.
3. FBD of the gate:

Solution
1. Hydrostatic (resultant) force Hy
= p = pressure at depth of the centroid / Hinge
P = Yoaier) Coanmoia) = (9810 N/m’)(10 m) = 98.1 kPa 2ieesm g
F X
» 4 = areaofelliptical panel (using Fig. A.1 to find formula)
5m
A= mab
— m(2.5m)(2 m) = 15.71m’ i
* Calculate resultant force 4. Moment equilibrium

=pd = 2y =
F, = pA = (98.1 kPa)(15.71 m2) T Myge = 0

1.541 x 10° Nx2.625 m—Fx5m=0

F {809 kN|

Example5
An inclined, circular gate with water on one side as shown in figure.

Determine the total resultant force acting on the gate and the
location of the centre of pressure.
Solution:

F = yheeA = (9.9)[1.5 + §(1.0sin 60°)][(1.0)"/4] = 14.86 kKN

L [ 15 .1 A0
i 'Linau" YO e + 0oy -
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Example 6

3.4

the gate from opening when h is 8 m.

Circular gate ABC in Fig. 3-35 is 4 m in diameter and is hinged at B. Compute the force P just sufficient to keep
solution

F = yhe A = (9.79)(8) 7 (4)*/4] = 984.2 kN L. = md*/64 = x(4)"/64 = 12.57 m"

_ —L.sin@_—(12.57)(sin90°) _
o= ThA T ®Im@] P

2 My=0 (PY(2) — (984.2)(0.125) = 0

P=61.5kN
[ e
2m 1]
€ St p F "‘;-h
P
! Fig. 3-35(a) 1er < Fig. 3-35()
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Hydrostatic Force on a Plane Surface: Geometric Properties
la “A=bs A=xR
2 1 3 "
f@—x 1 Io=qgha l,=1, =5
; {2 b gy’ fo =0
b—f . & |
. 2 2 Lo=1
{a)
A= ﬂg} L. By — A= f_g! I, = ";{
i, = 0.1098K" | Ly = a6 - 201
m i I =0.3927R" '|' i
o 3% y |5
L‘ R o= 4 'J ! e =0 _L.-- bid | Jl
3
[ b
le) (e}
Centroid Coordinates
Areas 3
{,=1_=0.054888"
Moments of Inertia NS
le)
Example 8
A vertical, triangular gate with water on one side is shown in Fig. 3-11. Determine the total resultant force
acting on the gate and the location of the center of pressure.
7R

R
Solution: 1
F = yhoA = (9.79)[3 + 3(D)][(1.2)(1)/2] = 21.54 kN

ok (1.2)(1)*/36
J:,,,-hq,+th =B+ @)+

B+iNama em




H.W

340  The triangular trough in Fig. 3-32 is hinged at A and held together by cable BC at the top. If cable spacing is
1 m into the paper, what is the cable tension?

/Clbh c
B w T
\ l /ﬂim
Water sm
|
A
Fig. 3-32(a)
ans T =B88.5kN
HW 2

Gate AB in Fig. 3-25 is semicircular, hinged at B. What horizontal force P is required at A for equilibriuam?

Anc. P=T798 kN

Fig. 3-25(a)

HW3

:Q2)) Arectangular gate, 3m width, hinged as shown in figure (1). Determine

A - The total hydrostatic force on the gate when the storage depth is 6m. and Anc. 294.3kN

B- For the gate to be stable, what value of the weight W?. Anc. W= 156.96kN

Water

Hinge
6m g

2m

2m

==&
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L7 pressure Prism Graphical interpretation of pressure distribution

- Especially applied for a rectangular surfaces (areas)

- Simple method for finding the force and the point of action

Consider the situation shown

by ——
X Information from the diagram
- Vertical wall of width b and height h
- Contained liquid with specific weight ¥

- Pressure: p,,, =0 & Prostom =V h

From the last section,

h
F,=(yh)-(A)=p, (atthe centroid)xarea = V(EJA

Let’s define a pressure-area space. (See the right figure above]
1. Horizontal axis: Magnitude of the pressure
2. Vertical axis: Height of the area
3. Axis toward the plane: Width of the area

: Resultant volume (Pressure prism)

® How to find the resultant force Fg from the pressure prism

Fpi= ;‘/(g}—i = %(’;vh)(bh) = Volume of the pressure prism
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® How to find the point of action of Fg (the point of action)

From the last section,

ypzlxc +y, = Ixc +}

yed “° (1
(2h)(bh)

(In case of rectangular plate, 7. = é/lh2 = éb}ﬁ)

1
2

1.3
—bh
yp = 112—+1h:lh+lh = gh (from the top)
- (bh) 23

From the pressure prism

Ypr = Centroid of the pressure prism

»
»

h (from the top) = ;h (above the base)

W | N

Xp = Horizontal center
X% Special case of a plane surface not extending up to the fluid
surface

- Completely submerged plane (See Figure)

Consider the situation shown

Pressure prism

- Trapezoidal cross section

(1) Resultant force Fp

= Volume of the shadow region
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Fr = Volume of hexahedron + Volume of prism

= F(4apE) T F2(BCD)

= () A+ 70— )4

(2) The location of Fr(y,): Consider the moments again

Moment by F, acting at y,
= Moment by /| at y; + Moment by F, at y,

F,y,=Fy +F)y, where y, =— for rectangle

for triangle  (From the top)

wI§ N |

Y2 =

® The effect of the atmospheric pressure p_,,.
: Increasing Volume of hexahedron (F1), NOT the prism (F>)

Example 1
3.6 A dam 20 m long retains 7 m of water, as shown in Fig. 3-6. Find the total resultant force acting on the dam and
the location of the center of pressure.

solulion  F=yha =(9.79)[(0 + 7)/2]{(20)(7/sin 60°)] = 5339 kN. The center of pressure is located at two-thirds the
total water depth of 7 m, or 4.667 m below the water surface (i.e., iy, = 4.667 m in Fig. 3-6).

|
|
I
I
|
I
|
I
|
|
|
[
I

Example 2

L1

360 Determine the pivot location y of the square gate in Fig. 3-49
so that it will rotate open when the liquid surface is as shown.

Fig. 3-49
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Solution
F=[1yx2 +0.5(3 — 1)yx2]x2 = 8y = 78.48KN
The location of pivot must be at the resultant action (FR)
Sothat} M about PointA=0
2
Fix1 + FZx(E) =FR.y
F1=2yx2=39.24 KN
F2 = 0.5x2yx2x2 = 39.24KN
2
39.24x1 + 39.24x (E) =78.48.y
—-y=0.834m
Example 3

The dam of figure has a strut AB every 6 m. Determine the compressive force

in the strut, neglecting the weight of the dam.

Solulion : If the struts are doing their job, the moment about the hinge should be 0! Every six
meters there is a strut, so the width each strut supports is 6 m.

Use any method to determine the forces on the dam due to the water. Using the pressure prism
method:

(1) the force on the upper 2 m portion of the dam is
F = % (27) (2 m) (6 m wide) =12y
(2) the force on the lower portion of the dam is split into 2 pieces
Fy= (2v) (5 m) (6 m wide) = 60~

and 1
Fy = 3 (4) (5 m) (6 m wide) =60y


Dr. Ammar
Line

Dr. Ammar
Line

Dr. Ammar
Line

Dr. Ammar
Line


Fluid Mechanics lectures and Tutorials 54

The compressive force on the strut AB is in a direction along the strut. and so to determine the
moment about the hinge. the force is split into - and y-components. determined by the geometry
shown in Fig. 2.61,

20 4
Fan, = % Fan Fap, = g Fan
Now writing the moment equation about the hinge. (moment = force x lever arm)
1 1 20 4
+OXMu=0: -k [4 T3 (3)] —Fy(25) - Fy [E (5)] + % Fas(4) + G Fas(3) =0

or, after rearranging

4.9814 Fap = 549,136 N-m 41, 470, 900 N-m 4 980, 600 N-m
Fap = 602,368 N = 602.4 kN

:Example 4

A structure is so auanged along a channel that it will spill the water
out if a certain height y (Fig. 2.18a) is reached. The gate is made of steel plate
weighing 2500 N/m?, Determine the height of y.

1.2 yy

— |
e
(B

. 7y’
¥ ¥y = 2

|l
A=
L
it -

A=12m? ry
0.6m
L
3000
(a) (b) (c) (d)

Solution Using pressure-prisin concepts, for unit width normal to the page the
force on the horizontal leaf (Fig. 2.18b) is gweu by the volume of a pressure prism
of base 1.2 wm? and coustant altitude vy N/ w”, which yields F,, = L.2vy N acting
through the center of the base. The pressure prism for the vertical face (Fig. 2.18¢) is
a wedge of base y m? and altitude varying from 0 to vy N/m?. The average altitude
is vy/2, so F, = yy?/2 N. The centroid of the wedge prisn is y/3 from the hinge.
The weight of the gate Hoor exerts a force of 3000 N at its center. Figure 2.18d shows
all the forces and moment arms. For equilibrium, that is, the value of y for tipping,
momments about the hinge must be zero.

M = (3000 N)(0.6 1) + (1.2vy N)(0.6 m) — (%z N) (% m) =0

M =1y3—4.32y—1.1014 =0

By using try and error technique (or other techniques like Newton
Raphson method) we find that y=2.196m
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Example 5:

1.11 Find the resultant force due to water on both sides of the gate including its

line of action.
PI‘J
== == =<
: Bl
e e i
H=3m | g — = = =\
S " Gate_ "~ _‘}
dede W (Gate widih) ~ 7
z [ = - B el
| e
KA LLSLLS

Solution

F1=1yx2x1.3 =25.5KN
F2 =0.5x2yx2x1.3 = 25.5KN
F3 =0.5x2yx2x1.3 = 25.5KN

~ FR=25.5+25.5—-25.5=25.5KN (right)

The location of the resultant action (FR)
by > M about PointA =0

2 2
Flx1+ F2x (in) =¥l (in) +FRY =0

—=¥=1m
FR

F2 canceld F3
So that FR is same of F1

Wall
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iExample 6 ;Gate AB in Fig. is 4 ft wide and hinged at A. Gage G reads —2.17 psi, while oil (s.2. = (.75)
is in the right tank. What horizontal force must be applied at B for equilibrium of gate AB?

5. ol

T

Y

18’

Solution F=yh,A Foa=[(0.75)(62.4)](9)[(6)(4)] = 3370 1b

F, acts (3)(6), or 4.0 ft from A. For the left side, the negative pressure due to the air can be converted to its
equivalent head in feet of water. A =p/y = (—2.17)(144)/62.4 = —5.01 ft. This negative pressure head is
equivalent to having 5.01 ft less water above A. Hence, Fyy,o = (62.4)(6.99 + $)[(6)(4)] = 14 960 Ib.
—1I.sin & —[(4)(6)’/12](sin 90°)
= = =—0.30ft
2T Thed | (6.99+ DIO)@)]
Fy,0 acts at (0.30 + §), or 3.30 ft below A. ¥ M, =0; (3370)(4.0) + 6F — (14 960)(3.30) = 0, F = 5980 Ib (acting
leftward).

Example 7:
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EXAMPLE (8):

A tank 2 m deep and 1 m wide is layered with 0.5 m of oil (S=1.2), and 1.5 m of water, and
with air pressurized at top with 6 kPa. Compute (a) the total hydrostatic force and (b) the
resultant center of pressure of the fluid on the right-hand side of the tank.

Solution: (a)

P, = 6 kPa.

P= 6 kPa

P, = 1.5x9.81 + 6 = 20.715 kPa
P; = 20.715 4+ 0.5x1.2x9.81 = 26.6 kPa
~ F; =6x1.5x1 =9 kN

« Fy = 0.5x(20.715 — 6)x1.5x1 = 11.03 kN

~ F3 =20.715x0.5x1 = 10.35 kN

« F, = 0.5x(26.6 — 20.715)x0.5x1 = 1.47 kN

~Fr = ZF =9+ 11.03+10.35+ 1.47 = 31.85kN

(b): The center of pressure from the water surface:

Take Moment to the forces from the water surface:

FTxY=ZF.y

2 2
~ 31.85xY = 9x0.75 + 11.03x <§) x1.5 +10.35x(1.5 + 0.25) + 1.47x [1.5 + (g) xO.S]

->Y=121m

HW

P2.72 Gate B in Fig. P2.72 is 30 cm high, 60 cm wide into the
paper, and hinged at the top. What water depth h will firs
cause the gate to open?

~C

. Water h
Air at

10 kPa
gage

P2.72 1 anc h=1.12m
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L8
Forces on Curved Surfaces - Non-planar surfaces

dx=ds.cos(0)

F,=F +F,

py

For unit width of surface

dey =P-ds.cos@

P=y-y dx = ds.cos@
dr,, =y-y-dx

.'.iny :J.;/-y-dx:y-jydxzy-‘v’

Where V the volume of liquid above the
surface to the zero pressure surface
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e By the same way we find the vertical
component of pressure force if the liquid
exist under the surface by taking the sign
of V as —ve to represent the upward
direction of this force

dF, =P-ds.cos¢ =—P-ds.cosf

P=y-y dx = ds.cosd
dF, =—y-y-dx

.‘.Tpr :—Jy-y-dx:—y-Jydx:—y-V

dF, = P-ds.sind
P=y-y dy =ds.sinf

df, =y-y-dy
y2 Y2
Lo E d d —
N - jy yy 2}
Y1 Bg
) J/2 yl
o F =y Tyl
-7 2 S 2

2

Where (;/-y?) is the volume of pressure prism

on the surface projection on vertical plan

_’ dy=ds.sm(6)

Fr,
FP pr
dx=ds. coa(e)

components, i.e. MF, =Y (MF,  ,MF, )

F
- F :\/(pr)2 +(F, )" : Magnitude & tanH:F—”y

px

the line of action can be find from the concept of:

Moment of resultant force = The summation of the moments of its

: Direction &
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Example 1: A curved surface AB is a circular arc in F--?.m -
its section with radius of 2m and width of Imintothe | 2 sl —;

S e D e W

paper. The distance EB is 4m. The fluid above surface
AB is water, and atmospheric pressure applied on
free surface of water and on the bottom side of
surface AB. Find the magnitude and line of action of

the hydrostatic force acting on surface AB.

Solution

1. Equilibrium in the horizontal direction
Fy=Fg=pA=(5m)(9810 N/m*)(2x | m")
=981 kN

2. Equilibrium in the horizontal direction

 Vertical force on side CB
F,.=§DA=9_81 KN /mxdm=x2mx1m=7385k7
+ Weight of the water in volume ABC
W =¥ ggc = () (gar") (w)
= (981 kN/m*) x (025xx x4 m?) (1 m) =308 kN

* Summing forces
Fy=W+Fp=1033 kN

3. Line of action (horizontal force)

P 1x22/12
Yop =7 _}Tﬂ_(jm) [5':‘21'1 m)

Yep = 5.067 m
4. The line of action (x.p) for the vertical force is found by summing moments about point C:

The horizontal distance from point C to the centroid of the area ABC is found using Fig. A.1: ¥
w= 4r/301= 0.849 m. Thus,
5. The resultant force that acts on the curved surface is shown in the following figure.
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_J_—-|D.95? Tr.|<—
1.067 m
1 - 98.1 kN
v mng=1993 113
98.1
f=48°
109.3 kN Fresuy = 146.9 kN

Example 2: A cylindrical barrier in Fig. holds water as
shown. The contact between the cylinder and wall is
smooth. Consider a 1-m length of cylinder; determine (a)
its weight, and (b) the force exerted against the wall.

SOLUTION (a) For equilibrium the weight of the cylinder must equal the vertical
cowpouent of force exerted on it by the water. (The imaginary free surface for CD is
at elevation A), The vertical force on BCD is

1 ?rrz L3 2 L3
-'F‘UJ'JCLJ: Tﬁ-z‘.?" ’T:(Z?T-FB)’T

The vertical force on AB is

2
1 S
b (-T2
Hence, the weight per meter of length is

By + Foay = (31 + 4)y = 0.132 MN

(b) The force exerted against the wall is the horizontal force on ABC minus the horizontal
force on CD. The horizontal components of torce on BC' and C'D cancel; the projection
of BCD on a vertical plane is zero. Hence,

Fy = Fiy,p =27 =19.6 kN

since the projected area is 2 m? and the pressure at the centroid of the projected area is
9806 Pa.
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Example 3 |

The submerged, curved surface AB in Fig. Find the horizontal and vertical components of the
total resultant force acting on the curved surface and their locations.

Solution:

_ 8y +12y

FH
2

x4x1 = 40y = 392.4 KN

m4?
FV = | (4x8) + —— |xLxy = 437.24KN

Location of FV& FH _ C|—-4 —

Momentabout B forFh T

4
— 8yx4x2 + 0.5x4yx4x (§) = 40yxY ﬂL

=Y =187mfromB

.

Momentabout B forFv 1

4 3n
—X=191mfromB

w42 4x4
- 32yx2+ | — |¥x (—) = 437.24xX

=
g PR
=

Example 4

54 The curved surface AB shown in Fig. 5-4a is a quarter of a circle of radius 5 ft. Determine, for an 8-ft length
perpendicular to the paper, the amount and location of the horizontal and vertical components of the total
resultant force acting on surface AB.

Solution:

5
FH— 7]/ x5x8 = 100y — 981 KN

Fy

le \ (1/3)(5) = 1.67m
]

2

5
FV = |(5x5) — HT lexy — 42183KN 1

Locationof FV& FH
FH act at (5/3) m from C

Momentabout C forFV

2

5 4x5
— (5x5)yx8x2.5— (HT)}’XBX (%) =421.83xX

- X=0.258m fromC
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Example 5
522 A 3-m-diameter water tank consists of two half-cylinders, each weighing 3.5 kN/m, bolted together as shown in
Fig. 5-22a. If support of the end caps is neglected, determine the force induced in each bolt.

Solution: gee Fig. 5-22b. Assuming the bottom half is properly supported, only the top half affects the bolt force.
P21 =(9.79(1.5+ 1) =24.48kN/m* L F, = p, A, — 2Rox — Wit,o — Woans naae = 0, 24.48[(3)(#5)) — 2R —
9.79[(F)(xN1.5)°/2] — 3.5/4 =0, K= 4.42kN.

Bolt
spacing
25 cm

Fig. 5-22(a) Fig. 5-22(b)

or (25x3 —g. 1.57)x0.25x9.79 = 2b + 0.25x35 — b = 4.42 kN

Example 6

531 The cylindrical tank in Fig. 5-31 has a hemispherical end cap ABC. Compute the total horizontal
forces exerted on ABC by the oil and water.

Solution:
I F=yheAd  (Fq)=[0.9)9.79)]C + D[(x)(2)’/2] =221 kN (left)

(Fi)2 = {(0.9)(9.79)](3 + 2) + (9.7 (x)(2)’)/2=338kN  (left)
(Fidow =221 + 338 =550 kN (left)

Fig. 5-31
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7 2.84 Calculate the force ¥ required to hold the gate of Fig. 2.74 in a closed position
when R =2 m

HW 2.85 Calculate the force F required to open or hold closed the gate of Fig. 2.74 when

R=15m

2.86 What is K of Fig. 2.74 if no force F is required to hold the gate closed or open?

Example

Hinge

il 5p gr 090




Fluid Mechanics lectures and Tutorials 64
L9

The Buoyant Force

A buoyant force is defined as the upward force that is produced on a body that is
totally or partially submerged in a fluid. Buoyant forces are significant for most
problems as surface ships. In Fig. 3.10a shown, consider a body ABCD submerged
in a liquid of specific weight Y. The pressures acting on the lower portion of the
body create an upward force equal to the weight of liquid needed to fill the volume
above surface ADC.

Fig. 3.10

The upward force is

Fup = T{-!Lh + -!.Lg]
where #5, 1s the volume of the body (i.e., volume ABCD) and ¥, 1s the volume of liquid above
the body (i.e., volume ABCFE).
As shown by Fig. 3.10a, pressures acting on the top surface of the body create a
downward force equal to the weight of the liquid above the body:

Fdnwn = 'T#a

Subtracting the downward force from the upward force gives the buoyant force Fg
acting on the body:

Fp=Fyp—Fann=71% 3.18
Hence, the buoyant force (Fg) equals the weight of liquid that would be needed to
occupy the volume of the body.

The body that is floating as shown in Fig. 3.10b. Pressure acts on curved surface

ADC causing an upward force equal to the weight of liquid that would be needed to

fill volume Vp (displaced volume). The buoyant force is given by
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Fp=F,=v¥p 3.19
Hence, the buoyant force equals the weight of liquid that would be needed to
occupy the volume Vp. We can write a single equation for the buoyant force:

Fe=v% 3.20

Stability of Immersed Bodies

When a body is completely immersed in a liquid, its stability depends on the
relative positions of the center of gravity of the body and the centroid of the
displaced volume of fluid, which is called the center of buoyancy.

e |f the center of buoyancy is above the center of gravity (Fig. 3.11a), any
tipping of the body produces a righting couple, and consequently, the body
is stable.

e |f the center of gravity is above the center of buoyancy (Fig. 3.11c), any
tipping produces an increasing overturning moment, thus causing the body
to turn through 180°.

e Finally, if the center of buoyancy and center of gravity are coincident, the
body is neutrally stable—that is, it lacks a tendency for righting or for
overturning, as shown in Fig. 3.11b.

Waight
() )] 3]

Fig. 3.11

Stability Floating Bodies
The stability for floating bodies than for immersed bodies is very important

because the center of buoyancy may take different positions with respect to the
center of gravity, depending on the shape of the body and the position in which it is
floating. When the center of gravity G is above the center of buoyancy C (center of
displaced volume) for floating body, the body will be stable and equilibrium. The

reason for the change in the center of buoyancy for the ship is that part of the
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original buoyant volume, as shown in Fig.3.12 by the wedge shape AOB, is
transferred to a new buoyant volume EOD. Because the buoyant center is at the
centroid of the displaced volume, it follows that for this case the buoyant center
must move laterally to the right. The point of intersection of the lines of action of
the buoyant force before and after heel is called the metacenter M, and the distance
GM is called the metacentric height.

e |If GM is positive—that is, if M is above G, the body is stable
e |If GM is negative, the body is unstable.

“
ﬂ.'.r A —— ) '-1.-______
=
B |
e
b T
B

-,

r
—

o T

[
I
|II

-

Fig.3.12

Consider the prismatic body shown in Fig. 3.12, which has taken a small angle of
heel a. First evaluate the lateral displacement of the center of buoyancy CC’, then
it will be easy by simple trigonometry to solve for the metacentric height GM or to
evaluate the righting moment.

The righting couple =W MG sin «

Where : W is weight of body and a angle of heel.

The metacenter M distance from center of bouncy (C) or MC

Can be found from:

MC = é and then GM = MC — GC

Where:

| is the Moment of inertia for the shortest submersed bed about the centroid (m?).
Vd is the submersed volume (m®).

GC is the distance from center of bouncy C to center of gravity G (m).
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Example(1):

EXAMPLE 312 BUDYANT FORCE ON A

METAL PART

A metal part {objeci 2) is hanging by & thin cond from a
Moating wood block (object | ) The wood block has a specific
gravity 5, = 0.3 and dimensions of 50 = 50 x 10 mm. The
metal part has o volume of 6600 ma’. Find the mass m, of the
metal part and the tension Tin the cord.

Provhicin Defimition

Situation: A metal part is suspended from a Noating block of
wood.

Find:

1. Mass (in grmms) of the metal part.

2, Tension (in newtons) in the cord.

Properties:
1. Water (15°C), o = 9800 N/m’.
2, Wood: 5, = 0.3.
Skewh:
§ Q-]' 25 mm
I I
10 mem
i
=) | 0. 15
H A
Plan

1. Draw FBDs of the block and the part.

2. Apply equilibrium to the block to find the tension.

3. Apply equilibrium to the part 1o find the weight of the part.
4. Calculaie the mass of the metal part using ¥ = mg.

Serlurion
1. FBDs

] bk

"y
2. Force equilibrium (verical direction) applied 1o block
F=Fy-W,

* Buoyant force Fg; =+ +p,. where +,; is the sub-
merged volume

Fgy =¥
= (9800 N/m’ (50 5505 7.5 mm (107 m’ /mm’)
=) 184 N
* Weight of the block
Wy = o
= (9800 N /m’ J(0.3)(50 % 50 5 10 mum’ }(107 m” /mim’)
= 0,0735N
* Tension in the cord
T = (0.184 =0.0735)
3. Force equilibrium {vertical direction) applicd fo metal pan
= Buoyant force
Fgz = 4% = (9800 N/m’ (6600 mm” y(107) = 00647 N
* Equilibrnum equation
Wy = T4 Fgy = (010 N) + (0.0647 N)

4. Maoss of metal pan
iy ™= H’:fg- IT.Hg

Review

Motice that tension in the cord (0.1 M) is less than the weight
of the metal part (0018 M), This result is consistent with the
common observation that an object will “weigh less in water
than in air,”

Example(2):

6.6

A barge is loaded with 150 tons of coal. The weight of the empty barge in air is 35 tons. If the barge is 18 ft

wide, 52 ft long, and 9 ft high, what is its draft (i.e., its depth below the water surface)?

Solution:

F,=W  62.4[(18)(52)(D)] = (150 + 35)(2000)

L = 52ft = 15.85m,

D=633ft

w = 18ft = 5.5m

— 9810(5.5x15.85xD) = (150 + 35)x1000x9.81 — D = 2.12m =~ 6.4 ft
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Example(3):

6.36 A wooden beam (s.g. =0.64) is 140 mm by 140 mm by 5 m and is hinged at A, as shown in Fig. 6-18. At what
angle @ will the beam float in water?

Solution:

I The forces acting on the beam are shown in Fig, 6-18. Woeam = [(0.64)(9.79)][(0.140)(0.140)(5)] = 0.6140 kN
and F, = 9.79[(0.140)(0.140)(L)] = 0.1919L. ¥ M, = 0; (0.1919L)[(5 — L/2)(cos 6)] — (0.6140)[(3)(cos 6)] =0,
~0.0960L% +0.9595L — 1.535 =0, L =2.000 m; sin 6 = 1/(5 — 2.000) = 0.33333, 6 = 19.5°.

Example(4):

6.56  What is the weight of the loaded barge in Fig. 6-25?7 The barge is 7 m in width.

Solution:

B=W 9.79{((D[(10)2.4) + 2)2.4)(2.4)/2]} =W W =2359kN
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Example(5):

In figure shown: a scow 6m wide and 18m long with weight 225T have G at 0.3m above
water surface ; check its stability in water:

Solution:
L =18m, w=6m, W = 225x1000x9.81 = 2207250N
— 9810(18x6xD) = 2207250 — D = 2.08m
~ C = 1.04 m from the water surface
CG =1.04+0.3 =134,
CM=—=—-7"——=144m - GM =CM —-CG =144 —-1.34=0.1m

vb _ 18x6x2.08

~ +value — stable body

i

0 -
JFDC ,0s Water
0

A
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Example(6):

6.75 The barge shown in Fig. 6-42 has the form of a parallelopiped having dimensions 10 m by 26.7 m by 3m. The
barge weighs 4450 kN when loaded and has a center of gravity 4 m from the bottom. Find the metacentric height
for a rotation about its longest centerline, and determine whether or not the barge is stable.

Solution:

I First, find the center of buoyancy of the barge. F, = W, 9.79[(10)(26.7)(D)] = 4450, D = 1.702 m. Hence, the
center of buoyancy (CB) is at a distance 1.702/2, or 0.851 m above the bottom of the barge. MB = I/V, =
[(26.7)(10)*/12)/[(10)(26.7)(1.702)] = 4.896. The distance from CB to CG is 4 — 0.851, or 3.149 m. Therefore,
the metacenter is located 4.896 — 3.149, or 1.747 m above the CG, and the barge is stable.
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Example(7):
6.69 A wood cone floats in water in the position shown in Fig. 6-36a. The specific gravity of the wood is 0.60. Would

it be stable? o
N

Tcm

N

\ A \\ /
T'mom \\ h //
\ / 7 5em

\/

mx7%x10
12

G=75cm fromthetip, W= 0.6x9810< )xlO‘6 = 0.756N

7 D
let submerged depth =h — 0°-7% - D =0.7h

h.m. D?

2 0.1283h®> - Fb=w - 9810x0.1283 h3 = 0.756N

Vb =

8.44.71.5.91%

— h = 0.0844 m = 8.44cm & D=0.7x8.44=5.91cm & Vb= =77.1cm?

.~ C =0.75x8.44 = 6.33 cm from the tib. - CG =75—-6.33=1.17cm

mx5.91%
(M=—=—05%  _078cm - GM=CM—CG=0784—117 = —0.39 cm
vh 771
. —value — unstable body /\ Tem 4
\l’ 591cm /

=

\ 006—f

/
8.44cm \

\ /6.33cm !
\

10cm oC

hem
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:Example 8
A cube of timber 100 mm on each side weight 650 gr: |‘—‘ oim
Estimate its draft in water and in o1l with (s=0.9): L | %
p =
. uo
Estimate its draft with 200gr additional weight in water and oil: R e e 3_
iy
- im
Solution: ‘ \/

m  0.65 kg

= r = = ——=— = e = = 2
w = 0.65x9.81 = 6.376N , Pt > " 000 650m3 — ¥ = 650x9.81 = 6376.5N/m

inwater : Fb=w — 6.376 = 0.1x0.1xDx9810 — D = 0.065m
inoil : Fbh=w — 6.376 = 0.1x0.1xDx0.9x9810 — D = 0.072m
with 200gr additional weight m water:

inwater : Fb =w — (0.2 + 0.65)x9.81 = 0.1x0.1xDx9810 — D = 0.085m

.. Example(9) HW

For the crude oil ship shown: if the empty ship weight =10000T and its length of
200m.

Find the total oil volume of S=0.85 that can be transmitted by the ship in (barrel)

and check the ship stability if SG. at 2 m above water surface.

Qil Tanks
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Kinematic of Fluid Motion Lec:1
Fluid flow

Motion (flowing) of a fluid mass
accrues when it is subjected to
unbalanced forces that reveal if the

fluid mass was subjected to h>
hydraulic gradient (e.g. tilting of h \ Free surface
i »
free surface by certa_ln angle or FPr= pg.hy. 54
connect two containers have <«—FP1= pg.h,. 84
different levels). This means that o4 \Flow
fluid mass lies under an acceleration FP\+ FP>

toward its flow direction. This
motion continues as long as unbalanced forces are applied.

Flow is defined as the quantity (mass or volume) of fluid (gas, liquid or vapour)
that passes a point (section) per unit time. A simple equation to represent this
is:
Flow — Quc.mtlty
time
Flow Classification (Flow pattern)

Having introduced the general concepts of flow patterns, it is convenient to
make distinctions between different types of flows. These concepts can be best
introduced by expressing the velocity of the fluid in the form:

V=V(,t)

where s is the distance traveled by a fluid particle along a path, and t is the
time.

» Uniform or Non-uniform

¢ A uniform flow is a flow in which the velocity does not change along a
ov

streamline, i.e. —
0s

=0

In uniform flows the streamlines are straight and parallel.

¢ A non-uniform flow is a flow in which the velocity changes along a

av;tO

streamline, i.e. —
0s

» Steady or Unsteady

¢ In a steady flow the velocity at a given point on a streamline does not
ov 0

change with time: =
ot
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¢ An unsteady flow exists if: % # 0

> Combining the above we can classify any flow into one of four types:

e Steady uniform flow. Conditions do not change with position in the stream
or with time. An example is the flow of water in a pipe of constant diameter
at constant velocity or discharge (flow rate).

e Steady non-uniform flow. Conditions change from point to point in the
stream but do not change with time. An example is flow in a tapering pipe
with constant velocity at the inlet - velocity will change as you move along
the length of the pipe toward the exit.

e Unsteady uniform flow. At a given instant in time the conditions at every
point are the same, but will change with time. An example is a pipe of
constant diameter connected to a pump pumping at a constant rate which
is then switched off or in open/close valves.

e Unsteady non-uniform flow. Every condition of the flow may change from
point to point and with time at every point. An example is surface waves in
an open channel.

Flow rate
weight
Welghl‘ ﬂowr ate = time taken to accumulate this mass - P9Q
mass
mass flowrate =

time taken to accumulatethis mass
mass flowrate= p-volum flow rate

¢ Volume flow rate - Discharge.

Volume .
volume flowrate = — . = Discharge(Q)
time taken to accumulatethis volume

e More commonly we use volume flow rate
¢ Also known as discharge.

e The symbol normally used for discharge is Q.
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Discharge and mean velocity

Cross sectional area of a pipe is A
Mean velocity is vm.
O=A.Vnm
We usually drop the “m” and imply mean velocity

Free surface

Flow Equations

Equation of Continuity

The application of the principle of conservation of mass to fluid flow in a
stream tube results in the "equation of continuity' expressing the continuity of
the flow from point to point along the stream tube. If the cross-sectional areas
and average velocities at sections 1 and 2 in the stream tube of Fig. 31 are
designated by A;, A;, Viand V,, respectively, the .quantity of fluid passing
section 1 per unit of time will be expressed by A;Vi, and the mass of fluid
passing section 1 per unit of time will be A;V;p;. Similarly, the mass of fluid
passing section 2 will beA,V,p,, Obviously, no fluid mass is being created or

destroyed between sections 1 and 2, and therefore
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A1V1p1 = A2V2p2 ...... 4.1

Ve

A\

Thus the mass of fluid passing any point in a streamtube per unit of time is the

Fig. 4.6

same.

e If this equation is multiplied by g, the acceleration due to gravity, there

results giving the equation of continuity in terms of weight.
A1V1W1 = A2V2W2 ...... 4.2

The product will be found to have units of N/s and is termed the "weight rate of

flow" or "weight flow."

e For liquids, and for gases when pressure and temperature changes are

negligible, W,=W, , resulting in

A1V1 = A2V2 = Q ...... 4.3

» AV, = AV, 010, = 0, Continuity equation

where O = VA is the volume flow rate (m3/s)

Energy Equation (Bernoulli’s Equation):

Consider a small element of ideal fluid
(non-viscous and incompressible  fluid)
ossraligned along a streamline. It has a ¢
sectional area AA, pressure is assumed
launiform across its ends AA, and the loc
velocity is defined v and subject to
ontal)zacceleration in both directions x (hori
.(and z (vertical instead of y



almasar
Rectangle
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1. First from previous lectures, recall to the pressure difference due to
pressure variation in both directions (x, z)

dp dp
Ap = —A —A
P=ox 13,5
0, 0
ox oz
Also, we know that a_p:_pa“ and 8—p=—,o(g+az)
ox Oz
So
(Hydrostatic eq. extension
Ap=—p-a, Ax + (—p-(ay + g)) AZ  due to accelerations)
or dp =—pa.dx—p(gta.)dz

:>dp :_paxdx_pgdz_pazdz
=dp+pa,dx+pgdz+ pa,dz=0 (1)
2. We look at the acceleration of the fluid element.

e Ignoring the possibility that the flow might be steady, % #0

e v can change with time t, and also with position s along the

direction of motion.
i.e.v=Ff(t s).
e Hence, if the element moves a distance &s in time 6t, then the total

change in velocity év is given by:

P s+ Vs

os ot
and in the limit as 6t tends to zero, the "substantive" derivative represent the

acceleration in that direction and is given as:
spatially  temporarip
— —~=

dv ov ovds Ov ov ov
="+ -

GEg T hme e T T a Ve o

e For a steady flow the local velocity at a point does not vary with time,

. o . .
so the last term under such conditions (8_) will be zero. And the
t

acceleration remain as: a, = = (i.e. a, = § ,
dt ds Toodt ©odx

dv dv . dv dv
% =—= =y = and

dv, dv,
z = = VZ )
dt dz

a
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3. Now substitute the form of horizontal and vertical acceleration in equ's. (1)
we get;

dp+ p.v, v, dx + pgdz + p.v, , dz=0
dx dz

=dp+pv dv +pgdz+pv_ dv. =0

dp __ || Euler's equation (for ideal,
; +vdv +v.dv, +gdz =0 steady flow)

This is a form of Euler's equation, and relates p, v, and z in flow field.

it then becomes possible to integrate it - giving:

1
Lrlolav)rgz=C
o 2
E—f—lvz‘f’gZ:C
p 2
] Bernoulli’s equation
+ 2+ =C
p 5,0 vTpEgEZT (for ideal, steady
5 low
P Y . _C

pg 28
The three equations above are valid for incompressible, frictionless
steady flow, and what they state is that total energy is conserved
along a streamline.

The first of these forms of the Bernoulli equation is a measure of energy
per unit mass, the second of energy per unit volume, and the third of
"head", equivalent to energy per unit weight.

In the second equation, the term p is the static pressure, {¥:pv?} is the
dynamic pressure, pgz is the elevation term, and the SUM of all three is
known as the stagnation (or total) pressure, po

In the third equation:
e p/pgis known as the pressure head (or flow work head or flow energy

head), which is the work done to move fluid against pressure,

e zisthe potential head (elevation head),

e the summation of two terms (p/pg + z) is called piezometric head or
hydraulic head,

e V%/2g as the kinetic head (dynamic energy head or velocity head), and

e the sum of the three terms as the Total Head H. The sum of first and
third tem of 3™ equation is called the piezometric head respect to
piezometer's tube.
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where Cis a constant along a streamline.

» For the special case of irrotational flow, the constant C is the same
everywhere in the flow field.

» Therefore, the Bernoulli equation can be applied between any two points in
the flow field if the flow is lideal, *steady, ’incompressible, and “irrotational.

» i.e. for two points 1 and 2 in the flow field:

p1+v12+z=p2+v22+z
1 2
> pg 28 pg 2g

Equation above is called Bernoulli’s equation (for frictionless, steady flow).
All of terms of Bernoulli’s equation having dimension of length (L) or
dimension of energy times dimension of weight( FL/F). The elevation head
,;represent the potential energy per unit weight as below

elevation head = z

The velocity head represent the kinetic energy per unit weight as below,

VZ

velocity head = Z

The pressure head represent the pressure energy per unit weight as below,

presure head = g

The sum of elevation, velocity and pressure heads for ideal steady
incompressible flow is constant for all point in stream line,

P V2
—+ 2z +— = H = total head
Y 2g

the sum of elevation and pressure heads called piezometric head which
represent the manometric height of liquid from datum,

P
; + z = h = piezometric head
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Hydraulic and Energy Grade Lines

The energy grade line (EGL) shows the height of the total Bernoulli constant
2
5 +z + Z—g = H = total head. The EGL has constant height.

The hydraulic grade line (HGL) shows the height corresponding to elevation

and pressure head 5 + z| = h = piezometric head, that is, the EGL minus the

velocity head 7?/2g. The HGL is the height to which liquid would rise in a

piezometer tube

e In an open-channel flow the HGL is identical to the free surface of the

water.

e The EGL will drop slowly due to friction losses and will drop sharply
due to a substantial loss (a valve or obstruction) or due to work extraction
(to a turbine).

e The EGL can rise only if there is work addition (as from a pump or
propeller).

e The HGL generally follows the behavior of the EGL with respect to
losses or work transfer, and it rises and/or falls if the velocity decreases

and/or increases.

The energy line and hydraulic grade line for flow from a tank.

ni=p=0 g
=" [i’).—_———:: —r \_I
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*Under the assumptions of the Bernoulli equation, the energy line is horizontal.

+|f the fluid velocity changes along the streamline, the hydraulic grade line will not be
horizontal.

*If viscous effects are important the total head does not remain constant due to a loss in
energy as the fluid flows along its streamline » the energy line is no longer horizontal

streamline

Datum

Example 1: A flow of water from a reservoir to a pipe of different diameters
shown in Figure below. Calculate 1) the discharge and velocity at each pipe, 2)

the pressure in each pipe and 3) the energy and hydraulic grade lines.

Example 2: A flow of water from a closed reservoir with interior pressure of 50
kPa to a pipe of different diameters shown in figure below. Calculate 1) the
discharge and velocity at each pipe, 2) the pressure in each pipe and 3) the

.energy and hydraulic grade lines 30%Pa

DiI=3Mmm D2=200mm D3=100mm

Example 3: A pipe gradually tapers from 0.6m at A to 0.9m at point B. the
elevation difference between A and B is 3m. Find pressure head and pressure at
point B if the pressure head at A is 15m and velocity at A is 2m/s. Assume the

frictionless flow.
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Example.4

3.33 In some wind tunnels the test section Test section

is perforated to suck out fluid and provide a | .

thin viscous boundary layer. The test section . / ) | /

wall in Fig. P3.33 contains 1200 holes of LEJ‘H 'i o
5-mm diameter each per square meter of '

wall area. The suction velocity through each . _J

hole is V, = 8 m/s. and the test-section Fig. P3.33

entrance velocity is V; = 35 m/s. Assuming

incompressible steady flow of air at 20°C,

compute (a) V,. (b) V3, and (¢) V. in m/s.

D=22m -
) D,=25m

Solution: The test section wall area is (7)(0.8 m)(4 m) = 10.053 m”. hence the total
number of holes is (1200)(10.053) = 12064 holes. The total Suktion flow leaving is

Q.ion = NQ, 1. = (12064)(7/4)(0.005 m)*(8 m/s) = 1.895 m*/s
(@) Find V.. Q.=Q, or VO§(2.5}2:(35)§[0.8}2.

Ans. (a)

solve for 'V, = 3.58 m
s

) Qy=0Q, - Qi = (35%(0.8 ) -1.805=V, %(0.8)2.

(©) FindV;: Q;=Q, or vff(2.2)~:(31.2)§(0.8).

solve for  V; =4.13 M Ans. (c)
S

Example. 5

3.167 In Fig. P3.167 the fluid is gasoline
at 20°C at a weight flux of 120 N/s.
Assuming no losses, estimate the gage
pressure at section 1.

Solution: For gasoline, p = 680 kg/m3.
Compute the velocities from the given flow

rate:
i - 3
Q= LOBA g5
e 680(9.81) s
V= Q08 _ssgm. oy, = 0018 _g4em
7(0.04)’ S 7(0.025)° s

Now apply Bernoulli between 1 and 2:

V2 V2 oF )2
&+%+gz| ~P2 2 er o Py - Oeage)  (9.16)

p 2 p 2 ' ol 2 680 2

+9.81(12)

Solve for p; = 104,000 Pa(gage) Ans.
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